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PINK1/PARKIN signalling 
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Abstract 

Mutations in the PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) genes are associ-
ated with familial forms of Parkinson’s disease (PD). PINK1, a protein kinase, and PARKIN, an E3 ubiquitin ligase, control 
the specific elimination of dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial network and 
preserving energy metabolism. PINK1 regulates PARKIN translocation in impaired mitochondria and drives their 
removal via selective autophagy, a process known as mitophagy. As knowledge obtained using different PINK1 and 
PARKIN transgenic animal models is being gathered, growing evidence supports the contribution of mitophagy 
impairment to several human pathologies, including PD and Alzheimer’s diseases (AD). Therefore, therapeutic inter-
ventions aiming to modulate PINK1/PARKIN signalling might have the potential to treat these diseases. In this review, 
we will start by discussing how the interplay of PINK1 and PARKIN signalling helps mediate mitochondrial physiology. 
We will continue by debating the role of mitochondrial dysfunction in disorders such as amyotrophic lateral sclerosis, 
Alzheimer’s, Huntington’s and Parkinson’s diseases, as well as eye diseases such as age-related macular degeneration 
and glaucoma, and the causative factors leading to PINK1/PARKIN-mediated neurodegeneration and neuroinflam-
mation. Finally, we will discuss PINK1/PARKIN gene augmentation possibilities with a particular focus on AD, PD and 
glaucoma.
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Background
Mitochondria, first discovered in the late 19th century, 
are considered key for cellular bioenergetics [1, 2]. They 
consist of a double membrane with an intermembrane 
space. The inner membrane forms folds called cristae 
which provide an increased surface area for chemical 
and redox reactions to take place [3–5]. Mitochondria 
produce the majority of cellular adenosine triphosphate 
(ATP) through oxidative phosphorylation (OXPHOS). 
The protein complexes (cI-IV) of the respiratory chain 
transfer electrons from NADH and FADH2 (provided by 
the Krebs cycle) to molecular O2, a process also known 
as the electron transport chain (ETC). The ETC creates 

a membrane potential (ΔΨm) across the mitochondrial 
inner membrane by pumping protons from the mito-
chondrial matrix to the intermembrane space, thus creat-
ing a high concentration of protons in the intermembrane 
space and a low concentration in the mitochondrial 
matrix. Subsequently, along this chemiosmotic gradient, 
the protons move back into the mitochondrial matrix, 
via ATP synthase (cV). ATP synthase uses this process to 
create ATP from adenosine diphosphate (ADP) and inor-
ganic phosphate (Pi) [6–9].

Previously thought to be only the “powerhouse” of the 
cell it is now clear that mitochondria are multifaceted. 
In addition to their role in cellular bioenergetics, mito-
chondria control reactive oxygen species (ROS) levels 
and calcium homeostasis, and biosynthesize macromol-
ecules including lipids, amino acids and nucleotides [10]. 
Furthermore, mitochondria are involved in many cellular 
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physiological processes, including cell fate, differentia-
tion, proliferation and apoptosis [11, 12]. Alongside its 
more established roles, mitochondria are key regulators 
of the innate and adaptive immune system. Immune cells 
undergo significant cell-type specific metabolic changes 
during an immune response, moving from a quiescent to 
an active state that requires significant metabolites from 
mitochondria [13, 14]. Mitochondria can regulate immu-
nity via metabolic pathways, inducing transcriptional 
changes, activating inflammation, mitochondrial dynam-
ics (fission and fusion) and endoplasmic reticulum sig-
nalling [14, 15].

Mitochondrial stress, either driven by the environ-
ment, pathogenesis or ageing, leads to a myriad of dys-
regulation that can cause both neurodegeneration and 
neuroinflammation. Mitochondria are vital in regulating 
cellular adaption to stressors, including impaired bio-
genesis, mitochondrial DNA (mtDNA) damage, ageing, 
nutrient restriction and aberrant imbalances between fis-
sion and fusion events. If left unchecked, these processes 
can cause damage to nucleic acids, lipids and proteins 
through ROS, resulting in sustained oxidative stress [16, 
17]. Oxidative stress modulates mitochondrial dynam-
ics through posttranscriptional modifications, including 
ubiquitination [18]. This, in turn, leads to a build-up of 
damaged mitochondria and ultimately causes cell death 
and broader tissue dysfunction. In particular, tissues with 
high energy demands such as the heart, muscles, brain 
and retina are susceptible to mitochondrial dysfunction 
[19]. To mitigate the effects of stressors, several control 
mechanisms can be activated contributing to mitochon-
drial homeostasis [17].

Mitochondria first-line defence mechanisms includ-
ing enzymatic (such as superoxide dismutase, the per-
oxiredoxin/thioredoxin system and the glutathione 
peroxidase/reductase system) and non-enzymatic (such 
as GSH, vitamins E, A and C) antioxidants contribute 
to the maintenance of redox homeostasis [20]. However, 
beyond the utilization of antioxidants there exists several 
mitochondrial quality control mechanisms. These include 
regulation of mitochondrial fission and fusion events, 
which facilitate segregation of damaged mitochondria 
and axonal transport of mitochondria (fission) and the 
exchange of materials needed for their repair, such as 
mtDNA (fusion) [16, 21]. The mitochondrial unfolded 
protein response system, a mitochondria-to-nucleus 
transduction pathway, which promotes mitochondrial 
and cellular function if mitochondrial damage is sensed 
[22]. The ubiquitin–proteasome system leads to degrada-
tion of damaged outer mitochondrial membrane (OMM) 
proteins, and proteases lead to the removal of inner mito-
chondrial membrane (IMM) and mitochondrial matrix 
proteins [23]. Lastly, the export of damaged proteins 

via mitochondrial-derived vesicles (MDVs) or selective 
removal of damaged mitochondria via mitophagy end 
with their degradation in lysosomes [24].

PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 
ubiquitin-protein ligase (PARKIN) signalling play a key 
role in mitophagy and mitochondrial motility and size. 
PINK1 accumulates at the OMM in response to a reduc-
tion in mitochondrial ΔΨm caused by damage/dysfunc-
tion. In turn, this recruits PARKIN from the cytosol to 
the OMM were its E3 activity promotes mitophagy, 
through ubiquitination of mitochondrial proteins, lead-
ing to mitochondrial degradation. Defective mitophagy 
and PINK1/PARKIN signalling are present in neurode-
generative diseases including Alzheimer’s disease (AD), 
Parkinson’s disease (PD) and glaucoma [25–30].

Mutations in the PINK1/PARKIN signalling path-
way disrupts the sensitive homeostatic and quality con-
trol processes conducted by mitochondria. Mutations 
in PINK1 and PARKIN are localised throughout their 
genes affecting all their protein domains (Fig. 1). PINK1 
and PARKIN mutations are responsible for more than 
50% of the autosomal recessive juvenile parkinsonism 
(ARJP) cases [31]. However, there are several other caus-
ative genes for PD linked to mitochondrial dysregulation, 
including LRRK2, DJ1, ATP13A2 and SCNA, in addition 
to other PD risk genes [32–45]. Furthermore, dysregula-
tion of PINK1/PARKIN signalling has been associated 
with amyotrophic lateral sclerosis (ALS) and Hunting-
ton’s disease (HD), as well as eye diseases, such as age-
related macular degeneration (AMD), and is associated 
with retinal degeneration [46–51]. Efforts for the ame-
lioration of mitochondrial dysfunction through lentiviral 
and adeno-associated viral (AAV) mediated PINK1 and 
PARKIN gene augmentation therapeutics show promise 
(Table 1).

Main text
PINK1/PARKIN signalling
The mitochondrial serine/threonine-protein kinase 
PINK1, also known as BRPK and PARK6, protects cells 
from mitochondrial stress-induced dysfunction. Local-
ized to chromosome 1 in position 1p36.12, the PINK1 
gene has 8 exons encoding a 581 amino acid pro-
tein. It contains an N-terminal mitochondrial target-
ing sequence (MTS), a transmembrane domain (TM), a 
N-terminal regulatory domain (NT), a conserved protein 
kinase domain comprising of a N-lobe and C-lobe, and 
lastly a C-terminal domain (CTD) (Fig. 1a). PARKIN, also 
known as PDJ, AR-JP, LPRS2 and PARK2 is localized to 
chromosome 6 in position 6q26 [61, 62]. PARKIN gene 
has 14 exons encoding a 465 amino acid protein which is 
comprised of an N-terminal ubiquitin-like (Ubl) domain 
and a C-terminal RING1-IBR-RING2 (RBR) domain. 
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A RING0 domain sits N-terminally adjacent to RING1 
and residing between the in-between-RING (IBR), and 
RING2 domains is a Repressor Element of Parkin (REP) 
motif (Fig. 1b) [63–66]. Under healthy conditions, mito-
chondria have an optimal, relatively high ΔΨm and will 
import, process and lead to the degradation of PINK1 
(Fig.  2). However, under unhealthy conditions like oxi-
dative stress, low ΔΨm causes PINK1 mitochondrial 
accumulation leading to PARKIN recruitment from the 
cytoplasm and initiation of autophagic degradation of the 
damaged mitochondria, the mitophagy pathway (Fig.  3) 

[67–70]. This pathway is governed by phosphorylation 
and ubiquitination, posttranscriptional modifications 
mediated by PINK1 and PARKIN, respectively.

The tightly regulated import to and subsequent prote-
olysis of PINK1 in the mitochondria leads to its process-
ing from the full length 63 kDa protein precursor to the 
mitochondrial processing peptidase (MPP)-processed 
60  kDa intermediated, to its final presenilins-associ-
ated rhomboid-like protein (PARL)-processed 52  kDa 
“mature” form (Fig.  2a, b) [71–73]. The translocase of 
the outer membrane (TOM) and of the inner membrane 

Fig. 1  Schematic representations of PINK1 and PARKIN domains and disease-related mutations. a PINK1 is composed by 581 amino acids, 
encompassing the mitochondrial targeting sequence (MTS), transmembrane region (TM), N-terminal regulatory region (NT), N-lobe of the kinase 
domain, C-lobe of the kinase domain and the C-terminal domain (CTD). Mitochondrial processing peptidase (MPP) and presenilin-associated 
rhomboid-like (PARL) cleavage sites and PINK1 auto-phosphorylation sites are depicted in the figure (S228, T257, S402). b PARKIN is formed 
by 465 amino acids with a ubiquitin-like domain (UBL), linker, really-interesting-new-gene (RING)/unique Parkin domain (R0/UPD), RING1 (R1), 
in-between-RING (IBR), repressor element of Parkin (REP), and a RING2 (R2) domain. E2 co-enzyme and p-Ser65-Ub binding sites, as well as Ser65 
phosphorylation and Cys431 catalytic sites, are displayed. Disease-associated mutations collected from the movement disorder society genetic 
mutation (www.mdsge​ne.org/) and ClinVAR (www.ncbi.nlm.nih.gov/clinv​ar/) databases are displayed on top of schematic representation. In red are 
depicted the mutations considered pathogenic

http://www.mdsgene.org/
http://www.ncbi.nlm.nih.gov/clinvar/
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(TIM)23 complexes facilitate the importation of the 
PINK1 precursor via interaction with its MTS to the 
IMM. At the IMM, PINK1 undergoes cleavage at Ala103 
by the protease PARL in a ΔΨm dependent manner. 
Under normal, healthy conditions PINK1 is imported 
and processed for degradation. In contrast, if ΔΨm dis-
sipates, PINK1 remains localized to the OMM and is 
unable to be processed by PARL [72, 74]. Upon cleavage, 

PINK1 returns to the cytosol to be degraded by the ubiq-
uitin–proteasome system by UBR1, UBR2 and UBR4 
through the N-end rule pathway, leading to low levels of 
PINK1 (Fig. 2a, b) [75]. Recently Sekine et al. [76] found 
some PD related PINK1 mutations, I111S, C125G and 
Q126P, affecting an evolutionary conserved negatively 
charged amino acid cluster motif that constitutes the 
C-terminal of the PINK1 TM, can still be imported even 

Table 1  Summary of the PARKIN and PINK1 gene augmentation viral vectors

AAV Adeno-associated virus, CBA hybrid cytomegalovirus immediate/early enhancer-chicken β-actin, CMV cytomegalovirus, PGK phosphoglycerate kinase, S.N. 
substantia nigra, TU transducing units, Vg viral genomes, VSVG vesicular stomatitis virus

Viruses Capsid 
serotype

Promoter Sequence Injection 
place

Volume 
injected

Dose Disease 
model

Animal References

Lentivirus HIV-1 based 
vector 
with VSVG 
envelops

PGK Rat Parkin S.N. 2.5 µl 3.6 × 108 pg 
of p24 per 
ml

α-synuclein 
rat model 
for PD

Wistar rats [52]

Lentivirus HIV-1 based 
vector 
with VSVG 
envelops

CMV Human 
PARKIN

S.N. 2 µl 108 pg of p24 
per ml

6-Hydroxy-
dopamine 
rat model 
for PD

Rats [53]

AAV 2/2 CBA HA-tagged-
PARKIN

S.N. 2 µl 3.6 × 1012 vg/
ml

MPTP-treated 
mice, a 
model for 
sporadic PD

C57BL/6 mice [54]

AAV 2/2 and 2/5 CMV/CBA Human 
PARKIN

S.N. 2 × 2 µl 2.6 × 1012 vg/
ml

6-Hydroxy-
dopamine 
rat model 
for PD

Rats [55]

AAV 2/2 CMV/CBA Human 
PARKIN

S.N. 4 µl 5 × 1012 vg/ml Tau-induced 
dopamin-
ergic degen-
eration rat 
model for 
PD

Sprague–
Dawley rats

[56]

AAV 2/6 PGK Rat Parkin S.N. 2 µl 4.7 × 1010 
TUs/ml

Metham-
phetamine 
induced 
neurotoxic-
ity rat model 
for PD

Sprague–
Dawley rats

[57]

AAV 2/8 CMV Human 
PARKIN

S.N. 2 µl in mice 
3 µl in rats

2.0 × 1011 vg/
ml

T240R-PARKIN 
induced 
dopa-
minergic 
degenera-
tion model 
for PD

C57BL/6 J 
mice Wistar 
rats

[58]

AAV 2/2 CMV Rat Parkin Vitreous 5 µl 1.0 × 1013 vg/
ml

Chronic 
hyper-
tensive 
glaucoma 
model

Sprague–
Dawley rats

[30]

AAV 2/1 CMV Human 
PARKIN

Striatum 3 µl in rats 
5 × 10 µl in 
monkeys

7.0 × 1012 vg/
ml

α-synuclein 
rat model 
for PD

Sprague–
Dawley rats 
Macaque 
monkeys

[59]

AAV 2/2 CMV Human PINK1 Hippocampus 2 µl 5.0 × 1012 vg/
ml

mAPP mouse 
model for 
AD

mice [60]
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if ΔΨm dissipates. These mutants were found not to be 
cleaved by PARL but by the protease OMA1 at the IMM, 
suggesting that PINK1 did not accumulate on the dam-
aged mitochondria’s OMM for initiation of mitophagy. 
However, these PINK1 mutants could lead to PARKIN 
recruitment under OMA1 suppression.

In contradiction to the degradation of the 52  kDa 
PINK1 by the N-end rule pathway is the finding by the 
Przedborski Lab that ubiquitinated PINK1 is mostly 
anchored to the OMM and not in the cytosol. Impor-
tantly, they identified that the N-terminal phenylalanine 
forming a proposed N-degron motif of PINK1 was not 
facing the cytosol but rather located inside the OMM, 
suggesting PINK1’s low mitochondrial levels are due to 
continuous ubiquitination and proteasomal degradation 
under healthy conditions [73]. Recently, the same team 

identified the mechanism by which PINK1 content is 
kept at low levels. They found that upon PARL-process-
ing the 52  kDa PINK1 localizes at the mitochondrial-
endoplasmic reticulum interface and can interact with 
ER-associated degradation pathway E3 ligases Gp78 and 
HRD1 (Fig.  2c). These facilitate PINK1’s ubiquitination 
allowing valosin containing proteins, UFD1 and UFD2A, 
to target PINK1 for proteasomal degradation [77]. Other 
proteases such as matrix-AAA and caseinolytic mito-
chondrial matrix peptidase (ClpXP) can cleave PINK1. 
These may coordinate with PARL to govern the stability 
and localization of PINK1 [71, 75]. In damaged mito-
chondria, TOM does not import PINK1, and it remains 
uncleaved at the OMM, where it undergoes dimerization 
and autophosphorylation (Fig.  3) [78, 79]. Interestingly, 
Sekine et al. [76] found that without the TOM complex 

Fig. 2  The canonical PINK1/PARKIN pathway. a and b In healthy mitochondria, PINK1 is constitutively imported via translocase of the outer 
membrane (TOM)/translocase of the inner membrane (TIM)23 complexes to the inner mitochondrial membrane (IMM), cleaved by two proteases 
(mitochondrial processing peptidase (MPP) and presenilin-associated rhomboid-like (PARL)) and retro-translocated to the cytosol. Cleaved 
PINK1 is then degraded by the ubiquitin/proteasome system. While Parkin remains inactive in the cytosol. (a and c) PINK1 is also present at 
the mitochondria-endoplasmic reticulum (ER) interface, where it interacts with the endoplasmic-reticulum-associated protein degradation 
(ERAD) machinery. At the ER, PINK1 degradation by the proteasome is controlled by the ERAD E3 ubiquitin ligases HRD1 and gp78 and by the 
ERAD-associated proteins VCP, UFD1, andUFD2A
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accessory member Tom7 PINK1 was imported to depo-
larised mitochondria. Tom7 appears crucial in PINK1 
OMM accumulation and also plays a role in PINK1 
kinase activation for PARKIN recruitment. Phospho-
glycerate mutase family member 5 (PGAM5) also binds 
PINK1 and is required for mitochondrial stabilisation 

of full-length PINK1 on the OMM upon mitochondrial 
depolarisation, preventing its cleavage by PARL at the 
IMM [80].

Under basal conditions, three factors have been iden-
tified which show that PARKIN’s protein-folding main-
tains PARKIN in an autoinhibited state: (1) inaccessibility 
of the E2-binding site on RING1 due to its occlusion by 
the REP domain [65]; (2) a conserved cysteine residue on 
RING2 (Cys431) is made inaccessible by RING0 [64, 65, 
81]; (3) the Ubl domain inhibits parkin activity through 
the interface with RING1 and IBR domains [82–85]. The 
protein folding of PARKIN thus prevents the binding of 
Ub containing E2s to RING1 and the subsequent thiol-
based transfer of Ub to the RING2 cysteine residue. The 
Cys431 residue is catalytic, being required for the ligase 
activity of PARKIN. The catalytic residue allows for the 
formation of an isopeptide bond between Ub and the 
lysine residue of the protein [64, 65, 86].

PINK1 is upstream of PARKIN and through the Ub/
Ubl switch leads to activation of PARKIN by their phos-
phorylation at residue Ser65 (Fig. 3) [83, 84, 87–93]. Phos-
phorylation of Ubl increases PARKIN’s affinity for pUb. 
The binding of pUb to PARKIN enhances the rate at which 
PARKIN itself is phosphorylated by PINK1 [94, 95]. Spe-
cific phosphorylation of either Ub or Ubl leads to PARKIN 
activation; concomitant phosphorylation, however, leads 
to enhanced PARKIN activation [91, 92, 94]. Binding of 
pUb to PARKIN’s Ubl domain is essential for remodel-
ling of and exposure of RING1 to the binding of the Ub 
containing E2s and is in line with previous computational 
analysis [83, 96, 97]. Ubl phosphorylation or binding 
of pUb to Ubl has also been shown to lead to local rear-
rangement of the IBR and its decreased affinity for the Ubl 
domain, revealing cryptic binding sites in a region called 
the Ubiquitin Binding Region (UBR) [85]. Three surface 
areas, UBR1, 2 and 3, that could interact with Ub were 
explored. Both UBR2 and UBR3 were needed for PARKIN 
activity. The IBR rearrangement in active PARKIN allows 
binding of Ub containing E2s to the binding site on RING1 
while its Ub creates a bridge to the IBR of a neighbouring 
PARKIN molecule [85]. This association allows for the uti-
lization of the RING2 catalytic domain of neighbouring 
PARKIN molecules [85]. In summary, pUb is important 
for dissociation and phosphorylation of PARKIN’s Ubl 
domain allowing its recruitment to the mitochondria. Sub-
sequent PINK1 activation of PARKIN through Ser65 phos-
phorylation in the Ubl facilitates binding of E2 enzymes 
leading to PARKIN’s ligase activity. Several mutations exist 
throughout PARKIN, affecting its activity and stability 
(Fig. 1b) [98–100].

If there is severe mitochondrial dysfunction the ampli-
fied phospho-ubiquitin chains on the OMM signal the 
recruitment of autophagy adaptors such as nuclear dot 

Fig. 3  PINK1/PARKIN-directed quality control in damaged 
mitochondria. After damage, PINK1 is no longer imported into 
the inner mitochondrial membrane (IMM) and accumulates on 
the outer mitochondrial membrane (OMM). Here, a supercomplex 
composed by TOM complex subunits and PINK1 homodimers is 
formed, facilitating PINK1 autophosphorylation and activation. 
Once activated, PINK1 phosphorylates ubiquitinated substrates on 
the OMM and PARKIN enable its E3 ubiquitin ligase functions in 
concert with E2 ubiquitin-conjugating enzymes. PINK1-mediated 
phosphorylation of ubiquitin phospho-Ser65- ubiquitin on OMM 
substrates acts as the PARKIN receptor for its recruitment from the 
cytosol. PINK1 and PARKIN initiate a positive feedback loop, resulting 
in the coating of damaged mitochondria with phospho-ubiquitin 
chains. Individual OMM proteins decorated with poly-ubiquitin 
can be extracted from the membrane and degraded by the 26 S 
proteasome. Phospho-ubiquitin chains are bound by two mitophagy 
adaptors, nuclear domain 10 protein 52 (NDP52) and optineurin. 
Phosphorylation of optineurin by TANK Binding Kinase 1 (TBK1) 
enhances its binding to ubiquitin chains and promotes selective 
autophagy of damaged mitochondria. The two adaptors recruit 
autophagosomes via microtubule-associated protein 1A/1B-light 
chain 3 (LC3) binding, allowing the engulfment of dysfunctional 
mitochondria resulting in their direct degradation in lysosome
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protein 52 (NDP52) and Optineurin (OPTN). In turn, 
NDP52 and OPTN lead to the recruitment and activa-
tion of tank binding kinase 1 (TBK1), activated TBK1 
phosphorylates OPTN stabilizing its binding at the 
phospho-ubiquitin chains [101]. Interestingly, PINK1/
PARKIN-dependent mitophagy-induced sequestra-
tion of TBK1 leads to its removal from its physiological 
role at the centrosome causing G2/M cell cycle arrest. 
This highlights a possible role of PINK1/PARKINs in 
mitochondrial quality control before cell division takes 
place, preventing “unfit” mitochondria being passed on 
to daughter cells [102]. OPTN and NDP52 along with 
other autophagy adaptors lead to the recruitment of 
microtubule-associated proteins 1A/1B light chain 3 
(LC3), which engage with the autophagosome. Migra-
tion and subsequent fusion of the autophagosome with 
the lysosome, which is modulated by the RAS-related 
GTP-binding (Rab) proteins, creates the autolysosome 
where the mitochondrial proteins are degraded and 
processed for recycling (Fig.  3). Initiation of autophagy 
has been found in the absence of LC3 via the Unc-51 
like kinase 1 (ULK1) complex, which is comprised of 
ULK1, FAK family kinase-interacting protein of 200 kDa 
(FIP200), autophagy related gene (ATG)12 and ATG101 
[103]. The ULK1 complex, which mediates autophagy 
in a nutrient-dependent manner, is recruited to ubiqui-
nated cargo independently of AMPK by the cooperation 
of NDP52, and TBK1 [103]. Recently, Nozawa et al. [104] 
found that TBC1 domain family member 9 (TBC1D9), 
which is recruited to mitochondria via Ca2+-dependent 
Ub-binding, is essential for the activation and recruit-
ment of TBK1 and therefore the subsequent recruit-
ment of NDP52 and the ULK1 complex to damaged 
mitochondria.

PINK1/PARKIN in neurodegeneration
Neurodegeneration corresponds to any pathological 
conditions, primarily affecting neurons [105]. Typically, 
neurodegenerative diseases are progressive disorders 
that lead to neuronal degeneration and cell death. The 
umbrella term “neurodegenerative diseases” includes 
conditions such as AD, PD, amyotrophic lateral sclero-
sis (ALS), Huntington’s disease (HD) and also eye dis-
eases, such as age-related macular degeneration (AMD), 
glaucoma and a subset of inherited retinal dystrophies. 
Ageing is considered a primary risk factor in most neuro-
degenerative diseases [106]. Mitophagy increases in mus-
cles and neurons during ageing but disruption of PINK1/
PARKIN signalling abolishes this increase, hindering 
this crucial quality control mechanism and thus allow-
ing the accumulation of harmful mitochondria [107–
111]. Imbalances in mitochondrial fission and fusion 
are important for neuronal dynamics and are affected 

in neurodegeneration being linked to programmed cell 
death pathways [112]. PINK1 and PARKIN are essential 
in these processes interacting with fission/fusion machin-
ery molecules such as fission protein Drp1 (dynamin-
related protein 1) and fusion protein OPA1 (optical 
atrophy 1). Overexpression of Pink1 or Parkin in rat hip-
pocampal neurons leads to increased fission and can sup-
press a mitochondrial elongation phenotype caused 
by Drp1 knockdown. A similar phenotype is caused by 
PINK1 inactivation, leading to increased fusion. Yu et al. 
[113] found that in dopaminergic neurons, similarly to 
hippocampal neurons, PINK1/PARKIN had a compara-
ble influence on mitochondrial dynamics with tipping the 
fission/fusion balance towards more fission.

Alzheimer’s disease, the most common cause of 
dementia in the elderly, is a progressive neurodegen-
erative disease leading to memory deficits and cognitive 
decline, which in turn lead to behavioural and speech 
impairments. Ageing is the predominant risk factor 
with a prevalence of 10% for individuals over the age of 
65 [114]. Pathologically, AD is hallmarked by the pres-
ence of amyloid plaques, mainly consisting of agglomer-
ated amyloid-β (Aβ) peptides, and neurofibrillary tangles, 
mostly consisting of hyperphosphorylated tau, which 
are associated to cellular degeneration [115]. Another 
prominent hallmark of AD is the accumulation of dys-
functional mitochondria [116]. Robust induction of PAR-
KIN-mediated mitophagy is found in human patients’ 
brains and in a human amyloid precursor protein (hAPP) 
transgenic mouse model of AD [28]. During disease pro-
gression, cytosolic PARKIN levels are reduced, leading to 
increased mitochondrial dysfunction [28]. Mitochondria 
from AD patients skin fibroblasts exhibited slower recov-
ery of ΔΨm after insult [27]. Dysregulated protein levels 
of PARKIN and PINK1 were found in AD fibroblasts and 
brain biopsies. In both AD fibroblasts and hippocampal 
brain biopsies from Braak II-III stage patients, full length 
and cleaved PINK1 were increased. However, while 
PARKIN was diminished in the AD fibroblasts, it was 
found upregulated in Braak VI stage hippocampal brain 
biopsies. In AD fibroblasts, PARKIN recruitment after 
mitochondria depolarisation was found to be reduced, 
indicating defective mitophagy due to insufficient tagging 
of damaged mitochondria. Overexpression of PARKIN 
could compensate for the defective mitophagy in the AD 
fibroblasts [27]. Familial cases of AD are linked to auto-
somal dominant mutations of presenilin 1 (PSEN1). Both 
PSEN1 and PSEN2 are involved in a molecular cascade 
that modulates mitophagy via their control of PINK1 
transcription and function. Goiran et al. found that PAR-
KIN upregulates PSEN1 promoter activation. In turn, 
control of γ-secretase activity, by PSEN1, targets APP 
leading to its fragmentation, yielding Aβ and the APP 
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intracellular domain (AICD). Interaction of forkhead box 
O3a (FOXO3a) with AICD initiates Pink1 transcription 
and AICD-mediated control of autophagic processes, 
which were found to be PINK1 dependent. As PINK1 
recruits PARKIN to damaged mitochondria this high-
lights a feedback loop between the two genes that may 
become disrupted in neurodegenerative conditions [117, 
118].

Parkinson’s disease is a movement disorder attributed 
to the loss of dopaminergic neurons in the substantia 
nigra. Motor symptoms include resting tremor, rigidity 
and bradykinesias, while non-motor symptoms include 
autonomic dysfunction, anxiety and sleeping problems. 
PINK1 and PARKIN are mutated in some forms of famil-
ial PD [119, 120]. Pink1 and Parkin null Drosophila have 
learning and memory abnormalities and weakened cir-
cadian rhythms, in addition to underlying electrophysi-
ological irregularities in clock neurons [121]. Late-stage 
PD patients can develop dementia with an accumulation 
of α-synuclein in Lewy bodies [41, 59, 122, 123]. Nitro-
sative stress is a key pathological hallmark in PD and 
aging. Nitric oxide-induced S-nitrosylation of PARKIN 
and PINK1 leads to compromised mitophagy and thus 
accumulation of damaged mitochondria [124–126]. One 
of the major causes of early-onset PD is due to loss-of-
function mutations in genes including glucocerebro-
sidase (GBA), RAB39B, DJ-1, PINK1 and PARKIN [25, 
26, 127–130]. Pink1 and Parkin KO mice show minimal 
signs of neurodegeneration but still provide valuable 
insights into possible mechanisms of action [131–135]. 
Parkin KO mice have an increase in extracellular dopa-
mine concentration in the striatum, there is reduction in 
synaptic excitability in spiny neurons and dysfunction of 
the nigrostriatal pathway [131]. Another mouse model, 
presenting inactivated PARKIN due to a exon 3 dele-
tion causing a premature stop codon, showed cognitive 
and motor deficits with inhibition of both amphetamine-
induced dopamine release and glutamate neurotrans-
mission [133]. Additionally, some mouse and rat Parkin 
KO models exhibit no neurodegeneration or any detect-
able neurochemical or pathological changes compared 
to wild type counterparts [135, 136]. This may be due 
to developmental compensation for PARKIN in these 
models. Due to the lack of neurodegeneration found in 
mouse KO Parkin models, Stephenson et  al. [137] tried 
a novel approach by creating a double KO of Parkin and 
Parkin co-regulated gene (PACRG). Parkin and PACRG​ 
share a bidirectional promoter, with the transcriptional 
start sites being approximately 200 bp apart. However, no 
abnormalities of the dopaminergic system in the substan-
tia nigra and no loss of neurons were found.

Analysis of PARKIN and its substrates has yielded pos-
sible PD associated neurodegenerative mechanisms. 

PARKIN mediates the ubiquitination and proteasome-
dependent degradation of synaptotagmin-11 (Syt11) 
under normal conditions [138]. Syt11 is a novel risk gene 
involved in PD whose accumulation in dopaminergic 
neurons due to PARKIN dysfunction inhibits endocytosis 
and hence dopamine release leading to neurotoxicity [40, 
138]. Interestingly, Wang et  al. [138] found that knock-
down of Syt11 in Parkin knockdown background lead 
to the recovery of the dopamine release in the substan-
tia nigra. PARKIN also mediates the ubiquitination and 
proteasome-dependent degradation of Zinc finger pro-
tein 746 (ZNF746, also known as PARIS) under normal 
conditions [139]. Accumulation of ZNF76 occurs due to 
PARKIN inactivation and is present in PD human brain 
samples [139, 140]. ZNF746 is a transcriptional repres-
sor of peroxisome proliferator-activated receptor-gamma 
(PPARγ) coactivator-1α (PGC-1α) expression and its tar-
get gene nuclear respiratory factor 1 (NRF-1). In Parkin 
KO animals, dopaminergic neurons loss was found to 
be in a ZNF746-dependent manner with its overexpres-
sion leading to dopaminergic neuronal loss in the sub-
stantia nigra [139]. Recently, Brahmachari et  al. [140] 
found that ZNF746 is a pivotal mediator of α-synuclein 
induced neurodegeneration affecting both dopaminergic 
and non-dopaminergic neurons. In α-synuclein over-
expression mouse models c-Abl kinase phosphoryla-
tion of PARKIN led to the impairment of its activity and 
subsequent accumulation of ZNF746. Importantly, they 
found that ablation of ZNF746 leads to the rescue of the 
neurodegenerative phenotype observed in α-synuclein 
models of familial and sporadic PD [140]. PARKIN inac-
tivation also leads to the accumulation of another one 
of its substrates, aminoacyl-tRNA synthetase complex 
interacting multifunctional protein-2 (AIMP2), found to 
be increased in Parkin KO mouse models and PD brain 
samples [140–143]. AIMP2 overexpression causes a pro-
gressive and degenerative loss of dopaminergic neurons 
due to Poly(ADP-ribose) polymerase-1 (PARP1) over 
activation. PARP1 inhibition in the AIMP2 overexpressed 
mouse model was protective and prevented degeneration 
of dopaminergic neurons [141].

Outside its role as an E3 ubiquitin ligase involved in 
mitophagy, PARKIN also has a role in transcriptional 
regulation (reviewed by Costa et al. [144]). As an exam-
ple, PARKIN has been found to undergo nuclear trans-
location upon DNA damage where it may play a role in 
the transcriptional control of DNA repair mechanisms 
such as base and nucleotide excision repair and double 
strand break repair [145]. The transcription factor role of 
PARKIN therefore may act as a cellular defense mecha-
nism against genotoxicity and suggests that DNA dam-
age plays a pathogenic role in neurodegenerative disease 
such as PD [144, 145]. Recently, Shires et  al. [146] have 
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identified a role for nuclear PARKIN during hypoxia in 
activation of estrogen-related receptor α (ERRα), which 
is a transcription factor associated with mitochondrial 
metabolism and biogenesis. Interestingly, they also found 
that PARKIN mutants, ParkinR42P and ParkinG430D, 
are excluded from the nucleus and therefore unable to 
induce the transcription factor role of PARKIN. There-
fore, the transcriptional roles as well as the mitophagic 
roles of PARKIN should be considered in PD as well as 
other neurodegenerative conditions.A Pink1 KO mouse 
model in which the pathogenic patient mutation G309D 
was inserted into exon 5 presented mitochondrial dys-
function leading to defects in ATP generation along with 
a reduction in dopamine in the nigrostriatal projection 
with a concurrent reduction in locomotor activity, but 
again without neurodegeneration [132]. Generation of a 
further Pink1 KO mouse, where exons 4–7 were deleted 
and consequently the majority of the kinase domain 
was removed, creating a nonsense mutation, caused 
impairment of dopamine release with striatal plastic-
ity reduction. These impairments were rescued either 
in the presence of dopamine receptor agonists or due to 
stimulation of dopamine release, again highlighting the 
relevance of the nigrostriatal circuit [134]. In the same 
Pink1 KO mouse model, it was shown that relocation of 
PARKIN to mitochondria induced by a collapse of Δψm 
relies on PINK1 expression [147]. In another Pink1 KO 
mouse model, where exon 2 to exon 5 were replaced with 
a LacZ/Neo cassette, impaired dopamine release was also 
found. As compared to wild-type, dopamine from striatal 
slices of Pink1 KO mice decreased in an age-dependent 
manner. Additionally, it was found an age-dependent 
decrease in basal oxygen consumption rates and ATP 
levels in Pink1 KO mice, which suggests that decreased 
ATP generation may be the cause of the decreased dopa-
mine release [148]. Recently, silencing of Pink1 in cul-
tured mouse hippocampal neurons caused a decrease in 
postsynaptic density proteins PSD95 and Shank as well 
as glutamate receptor subunit NR2B and mGluR5. Inter-
estingly, the authors found changes in actin regulatory 
proteins RhoGAP29 and ROCK2 which were concurrent 
with changes in spine morphology. The changes in den-
dritic spines, showing increased thin density spines and 
reduced head size of stubby spines, may be a sign of pre-
symptomatic changes that lead to neurodegeneration in 
PD [149]. In comparison, a Pink1 KO rat model showed 
nigral neurodegeneration with 50% dopaminergic cell 
loss, an increase in striatal dopamine and serotonin con-
tent and significant motor deficits [136].

The inability of rodent models to recapitulate the 
severe neurodegeneration seen in PD patients may be 
due to low levels of PINK1, as has been identified in mice 
[150]. These studies also suggest there may be PINK1 

independent mitophagy pathways yet to be eluded too. 
Recently, CRISPR/Cas9-mediated Pink1 deletion in rhe-
sus macaques triggered severe neurodegeneration of the 
cortex, striatum and substantia nigra, with several new-
borns dying shortly after birth [151, 152]. These data sug-
gest that in humans full PINK1 loss may lead to lethality 
in early development. Interestingly, a KO mouse model 
of the PINK1 OMM stabilisation protein PGAM5 leads 
to a more severe PD-like animal model than in Pink1 
KO mouse models. The Pgam5 KO mice show a signifi-
cant degeneration in dopaminergic neurons in addition 
to a PD-like movement disorder characterised by gait 
changes and bradykinesia [80].

Lastly, in light of mitochondria’s role in the immune 
system, we should look to reassess the many disor-
ders associated with defective mitochondrial genes in 
terms of potential autoimmunity. PD, as one example, 
has been recently hotly debated as also being an auto-
immune disease [153–158]. PINK1 and PARKIN have 
been found to regulate adaptive immunity, being key 
for mitochondrial antigen presentation in a mitophagy 
independent process. This process instead relies on the 
generation of MDVs with a direct correlation between 
the extent of MDV formation and the amount of mito-
chondrial antigen presentation. PINK1 and PARKIN 
inhibit this process, the presence of PARKIN was found 
to be key in preventing Snx9 being recruited to mito-
chondria and initiating MDV formation [159]. Further 
supporting this notion, it was recently found that intes-
tinal infection of Pink1 KO mice with Gram-negative 
bacteria elicited mitochondrial antigen presentation and 
autoimmune mechanisms. These responses triggered 
mitochondrial-specific CD8+ T-cells that were found to 
induce dopaminergic neuron death. The infected Pink1 
KO mice presented acute motor symptoms [153]. Thera-
peutics that influence mitochondrial immune regulation 
will be an exciting area to be developed in treating these 
diseases.

Amyotrophic lateral sclerosis is a progressive and 
debilitating neuromuscular disease marked by degenera-
tion of motor neurons in the brain and spinal cord, lead-
ing to muscle atrophy, paralysis and to death 3–5  years 
after disease onset. Mitochondrial dysfunction has been 
associated with ALS, with causative genes including 
autophagy adaptors OPTN and SQSTM1, and autophagy 
enhancer TBK1 [160–163]. Altered expression levels of 
mRNA and protein for PINK1 have been identified in 
human ALS patients muscle [164]. Mutations in superox-
ide dismutase 1 (SOD1) gene are associated with familial 
ALS [165]. A SOD1G93A ALS mouse model exhibits dys-
regulated PINK1 and PARKIN and progressive defects in 
mitochondrial function and dynamics [47, 164]. In spi-
nal cord motor neurons of the SOD1G93A mouse model 
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increased mitophagy, as marked by a mitochondrial accu-
mulation of OPTN and SQSTM1, was found, while there 
was a depletion of PARKIN and mitochondrial dynamic 
and biogenesis proteins. Interestingly, Parkin overexpres-
sion in NSC34 motor neuron-like cells, in which human 
G93A mutant SOD1 was expressed, was found to exac-
erbate the effects of mitochondrial damage leading to 
increased cell toxicity. However, Parkin knockout (KO) in 
SOD1G93A mice led to delayed disease progression with 
slower motor neuron loss and muscle denervation. Thus, 
chronic PARKIN expression in ALS may lead to sus-
tained activation of mitochondrial quality control leading 
to a depletion of mitochondrial dynamic-related proteins 
and inhibition of mitochondrial biogenesis, and these 
alterations ultimately lead to progressive mitochondrial 
dysfunction [47].

A hallmark of ALS is the accumulation of transac-
tive response DNA-binding protein 43 kDa (TDP-43) at 
ubiquitin-positive inclusions, and these TDP-43 protein 
inclusions have reduced PARKIN protein levels [166, 
167]. PINK1 and PARKIN are differentially misregu-
lated at the RNA and protein levels in animal models of 
TDP-43 proteinopathy. These models showed a decrease 
in Parkin mRNA and protein levels upon overexpres-
sion of TDP-43 but not PINK1. TDP-43 was found to 
govern Parkin mRNA levels in both an intron-mediated 
and intron-independent manner. While TDP-43 did not 
regulate Pink1 at the RNA level, its overexpression led 
to the cytosolic accumulation of cleaved PINK1 due to 
the impairment of the ubiquitin–proteasome system 
[46]. In stress conditions, such as ageing, this accumula-
tion of cleaved PINK1 leading to reduced mitochondrial 
activity may be a risk factor promoting neurodegenera-
tion. Lastly, Sun et  al. [46] found that by ameliorating 
the misregulation of PINK1 or PARKIN by their down 
or up-regulation, respectively, leads to suppression of 
the degenerative phenotypes observed in a TDP-43 pro-
teinopathy fly model.

Huntington’s disease is a fatal autosomal dominant 
disorder caused by misfolding and aggregation of the 
huntingtin (HTT) protein due to expansion of a poly-
glutamine tract (CAG repeats) within its N-terminal 
domain. The disease leads to cognitive deficits, cho-
reatic movements and psychiatric disturbances [168, 
169]. The mutant HTT protein has been found to neg-
atively affect the initiation of autophagy/mitophagy 
through interfering with the formation and stability of 
the ULK1 and PtdIns3K complexes, which are essen-
tial for autophagosome formation [170]. Mitochondrial 
fragmentation is a hallmark of HD patients with mutant 
HTT found to abnormally interact with fission protein 
Drp1 [171–174]. Additionally, swollen/degenerated 
mitochondria have been identified in a HD knock-in 

pig model which exhibited selective degeneration of 
striatal medium spiny neurons [175]. Furthermore, HD 
patients have impairment in the mitochondrial respira-
tory chain [176, 177]. In a Drosophila model of HD, 
mutant HTT led to mitochondrial fragmentation in 
photoreceptors, being abnormally ring-shaped. How-
ever, PINK1 overexpression enhanced mitochondrial 
quality control in a PARKIN-dependent manner, alle-
viating the formation of the ring-shaped mitochondria. 
Additionally, they found that PINK1 neuroprotection in 
the Drosophila brain led to normalization of ATP levels, 
improved neuronal integrity and increased cell survival. 
Lastly, Khalil et al. [48] found that defective mitophagy 
found in striatal cells from a HD knock-in mouse could 
be partially restored upon PINK1 overexpression.

Age-related macular degeneration is a complex reti-
nal disorder and the leading cause of severe blindness 
in the elderly population, resulting from both envi-
ronmental and genetic risk factors [178–180]. AMD 
affects central vision and its pathobiology includes 
activation of the innate immune response, neovascu-
larisation, oxidative stress and a build-up of proteins 
and lipids [179, 181]. Accumulation of mtDNA dam-
age is associated with AMD progression [182]. In the 
RPE of a Nuclear factor erythroid 2-related factor 2 
(NFE2L2/NRF2) and peroxisome proliferator-activated 
receptor-gamma captivator 1-alpha (PGC-1α) double 
knockout (dKO) dry AMD-like mouse model, elevated 
levels of oxidative stress markers, damaged mitochon-
dria, accumulated lysosomal lipofuscin and extracel-
lular drusen-like deposits were found. Nrf2 is part of 
the Keap1-Nrf2 pathway which is important in oxida-
tive stress regulation, and PGC-1α is involved in mito-
chondrial biogenesis and in the antioxidant defence 
system [183]. Recently, in the same NRF2/PGC-1α 
dKO mouse model at 1  year of age, dysregulation of 
mitophagy was evaluated. Compared to wild type RPE 
a significant increase in PINK1 and PARKIN levels on 
damaged mitochondria was found in the dKO, this 
additionally corresponded to an increase in the number 
of autophagosomes with mitochondrial cargo. How-
ever, despite elevated mitophagy initiation this model 
seemed to have uncompleted degradation of mitochon-
drial cargo via an unclarified dysfunction in the autol-
ysosomes [49]. Mitophagy may be a novel therapeutic 
target for the amelioration of AMD. In a Drosophila 
model of calcium cytotoxicity in which active TRPP365 
channels lead to retinal degeneration, abnormalities in 
mitochondrial morphology and function were found in 
photoreceptors. Interestingly, overexpression of both 
PINK1 and PARKIN prevented the TRPP365-induced 
photoreceptor cell degeneration [51]. Moreover, in a 
PINK1/PARKIN-induced photoreceptor degeneration 
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model, the induction of cell death by PINK1/PARKIN 
was found to be independent of mitophagy [50].

Glaucoma, caused by progressive degeneration of reti-
nal ganglion cells, leads to severe and irreversible blind-
ness, with 111.8 million people predicted to be affected 
by 2040 [184, 185]. Elevated intraocular pressure (IOP) is 
considered a major risk factor for glaucoma [186]. Ther-
apies directed at lowering IOP have proved to be suc-
cessful at preserving vision in some glaucoma patients, 
but this does not work for all patients [187]. Glutamate 
excitotoxicity, a pathophysiological mechanism in glau-
comatous neurodegeneration, leads to changes in mito-
chondrial dynamics, causing their dysfunction and cell 
death [188]. Overexpression of Parkin protects retinal 
ganglion cells from glutamate excitotoxicity [189]. Fur-
thermore, in a chronic hypertensive glaucoma rat model, 
overexpression of Parkin was protective, partially restor-
ing mitophagy and improving mitochondrial health [30]. 
Recently, Chernyshova et  al. [190] explored the role of 
glaucoma specific OPTN gene mutations and their effect 
on PARKIN-dependent mitophagy using mitophagy 
impaired HeLa cells. OPTN is a receptor for PARKIN-
mediated mitophagy pathway, and mutations of OPTN 
cause primary open-angle glaucoma (POAG) [29, 191]. 
Interestingly, Chernyshova et  al. [190] observed that 
while two ALS OPTN mutant proteins failed to rescue 
the impaired HeLa cells, seven glaucoma specific OPTN 
mutations did restore mitophagy and localized correctly 
to mitochondria. This work suggests that OPTN gene 
mutation in glaucoma may be mitophagy independent.

PINK1 and PARKIN in neuroinflammation
Neurodegeneration and neuroinflammation are con-
current processes in many disorders. Neuroinflamma-
tion is a process that involves the synthesis and release 
of pro-inflammatory mediators, such as cytokines and 
chemokines, and infiltration of immune cells that if 
uncontrolled contribute to neurodegeneration exacer-
bation. Here, we summarize the supporting pieces of 
evidence for the involvement of PINK1 and PARKIN in 
neuroinflammation.

As discussed before, mutations in PARKIN and PINK1 
cause early-onset PD [25, 192]. Primary human blood-
derived macrophages obtained from PD patients with 
PARKIN mutations display high levels of NLRP3 and 
IL-1β when stimulated with lipopolysaccharide (LPS)-
nigericin or LPS-ATP [193]. PINK1G309D, the loss-of-
function mutation associated with early-onset familial 
PD, promotes the expression of VCAM-1 and exacer-
bates the attachment of monocytes to brain endothelial 
cells [129]. Humans with monoallelic and biallelic PAR-
KIN mutations display elevated serum levels of IL-6, 
IL-1β, CCL2 and CCL4, whereas the levels of these 

molecules in serum of PINK1 heterozygotes were similar 
to those in control serum [194]. In contrast, mice lacking 
either Pink1 or Parkin have no substantial PD-relevant 
phenotypes, and their levels of cytokines in the serum is 
unaltered [131, 134, 135, 194]. However, acutely prepared 
cortical slices from Pink1 knockout mice, presented ele-
vated levels of pro-inflammatory cytokines, such as TNF-
α, IL-1β, and IL-6 [195]. In mature zebrafish systemic 
administration of LPS results in increased Pink1 gene 
expression in the brain [196].

In mice lacking Parkin or Pink1 upon both acute 
(exhaustive exercise-induced) or chronic (mtDNA muta-
tion-induced) mitochondrial stress, a robust inflamma-
tory phenotype is observed [194]. Following exhaustive 
exercise, Pink1+/− mice show increased IL-6, IFNβ1, 
IL-12(p70), CXCL1 and CCL4, whereas Parkin+/− mice 
display increased IL-6. Mice expressing a proofreading-
defective mtDNA polymerase (mutator mice) accumulate 
mutations in mtDNA but do not exhibit neurodegenera-
tion or elevated cytokines [194, 197]. However, PARKIN-
deficient mutator mice presented elevated IL-6, IFNβ1, 
TNFα, IL-1β, CCL2, IL-12(p70), IL-13, IL-17, CXCL1 and 
CCL4 [194]. Inflammation derived from either exhaustive 
exercise or mtDNA mutation results from the activation 
of the stimulator of interferon genes (STING), a central 
regulator of the type I interferon response to cytosolic 
DNA, and not due to activation of NRLP3 [194] (Fig. 4). 
Interestingly, PARKIN-deficient mutator mice exhibit 
dopaminergic neuron loss and motor impairment that 
can be rescued by treatment with levodopa [109] and, 
as well, by loss of STING, by crossing PARKIN-deficient 
mutator mice with STING-null mice (goldenticket mice) 
[194]. STING is activated when double-stranded DNA 
binds cyclic guanosine monophosphate (GMP) - adeno-
sine monophosphate (AMP) synthase (cGAS), which in 
turn generates cyclic GMP-AMP (cGAMP) [198]. PAR-
KIN-deficient mice subjected to acute or chronic mito-
chondrial stress displayed both increased mtDNA copy 
number and ratio of mitochondrial to nuclear DNA in 
the serum; this increase is not rescued by loss of STING 
[194]. STING activation by binding of cGAS to cytosolic 
double-stranded DNA (dsDNA), including mtDNA, and 
STING-mediated inflammation resulting from an accu-
mulation of mtDNA mutations in mutator mice, indi-
cate that mtDNA is a crucial inflammatory signal in the 
absence of PARKIN [194]. Release of mtDNA into the 
cytosol, subsequent interaction of mtDNA with cGAS, 
and induction of IFNβ expression is also observed in 
mouse models of macular degeneration [199] and upon 
herpes virus infection [200]. Surprisingly, Whitworth and 
colleagues showed that knockdown of Sting or its down-
stream effector Relish using RNAi (in vivo), is insuffi-
cient to suppress the locomotor deficits or mitochondrial 



Page 12 of 20Quinn et al. acta neuropathol commun           (2020) 8:189 

disruption in Pink1 or Parkin Drosophila mutants [201]. 
Furthermore, Sting loss does not affect the behavioural 
phenotypes associated with a Drosophila mtDNA muta-
tor model, nor the combined effect of mtDNA mutations 
in a Parkin background, concluding that phenotypes 
associated with loss of Pink1/Parkin are not universally 
due to aberrant activation of the Sting pathway [201]. 
Not only dysregulation of mitochondrial function pro-
motes inflammation, but also inflammation itself leads 

to mitochondrial dysfunction suggesting the existent of 
a pro-inflammatory loop with mitochondria playing a 
central role. IFNα-mediated deregulation of mitochon-
drial metabolism, including mitochondria hyperpolari-
zation and upregulation of PINK1, and impairment of 
autophagic degradation, results in cytosolic accumu-
lation of mtDNA passible of being sensed via STING 
to promote further inflammation [202] (Fig.  4). Par-
kin knockout mice submitted to chronic LPS exposure 

Fig. 4  PINK1/PARKIN-signalling and inflammation. Mice lacking Parkin or Pink1 upon acute (exhaustive exercise-induced) or chronic (mitochondrial 
DNA (mtDNA) mutation-induced) mitochondrial stress present inflammation due to the activation of the stimulator of interferon genes 
(STING) as result from the accumulation of mtDNA mutations and release of mtDNA into the cytosol. While, in systemic lupus erythematosus 
excessive IFNα damages mitochondrial respiration, leading to oxidative stress that impairs lysosomal degradation and obstructs autophagic 
clearance. Undegraded mtDNA from mitochondria, interact with the cytosolic DNA sensor cGAS in a sequence-independent way, promoting 
a conformational change of cGAS to catalyse the formation of 2,3-cyclic GMP-AMP (cGAMP). The cGAS activation, as well as cGAMP synthase, 
activate STING, recruiting binding kinase 1 (TBK1) as well as interferon regulatory factor 3 (IRF3). The IRF3 then displaces to the nucleus and induces 
immune-stimulated genes and type I IFN expression. The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signalling can 
also be activated by STING. In the absence of PARKIN and PINK1, high levels of mitochondrial antigens are presented to major histocompatibility 
complex (MHC) class I molecules in macrophages and dendritic cells triggering an adaptive immune response
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develop fine-locomotor deficits and loss of nigral dopa-
minergic neurons. However, in these mice, neuroinflam-
matory responses in the midbrain are similar to the ones 
observed in wild-type mice [203].

In the absence of PARKIN and PINK1, high levels 
of mitochondrial antigens are presented by major his-
tocompatibility complex (MHC) class I molecules in 
both macrophages and dendritic cells through mito-
chondrial-derived vesicles triggering adaptive immune 
response [159]. Therefore, PINK1 and PARKIN seem to 
repress mitochondrial antigen presentation providing a 
link between mitochondrial dynamics and the potential 
engagement of autoimmune mechanisms in the aetiology 
of PD [159].

The expression of PINK1 and PARKIN is increased in 
reactive astrocytes in the diseased human brain [204, 
205], suggesting that these proteins affect or regulate glia-
dependent immune responses. Lack of PINK1 increases 
glia-mediated primary neuron apoptosis and nitric oxide 
(NO)-dependent neuroblastoma cell death [206], sug-
gesting that PINK1 in glial cells promotes a neuronal 
protective effect. Ablation of PINK1 differentially affects 
inflammation-induced gene expression and NO produc-
tion in astrocytes, microglia and mixed astrocytes/micro-
glia [206]. PINK1-deficient astrocytes show proliferation 
defects, increased p38MAPK activation [207], elevated 
NO production, impaired mitochondrial function and 
increased cytoplasmatic and mitochondrial ROS levels 
[206]. PINK1-deficient astrocytes exposure to LPS and 
IFNγ overexpress inducible nitric oxide synthase (iNOS), 
NO and TGFβ1. However, PINK1-deficient microglia 
only show decreased IL-10 secretion [206]. In vitro, LPS-
activated murine microglia cell line (BV2) with reduced 
levels of PARKIN show increased levels of TNFα, IL-1β, 
IL-6 and iNOS mRNA via NF-κB and activating protein 
1 (AP-1). Quite similar pro-inflammatory profile, with 
an increase of TNF-α, IL-1β, IL-6, IL- 18, monocyte 
chemoattractant protein-1 (MCP-1) and NRLP3 is also 
observed in Parkin-null primary microglia cells exposed 
to LPS [193]. Mouse microglia primary cultures, with 
reduced levels of PARKIN, present a similar increase 
in TNFα, IL-6 and iNOS and a decrease in IL-1β, after 
exposure to either IFNγ, TNFα or both [208]. These data 
suggest that PINK1 or PARKIN loss exacerbates inflam-
mation and promotes survival of activated microglia, 
contributing to neuroinflammation. Furthermore, in 
macrophages, PARKIN suppresses LPS-induced expres-
sion of TNFα, IL-6 or MCP-1 production [209, 210].

PARKIN and PINK1 gene augmentation therapy 
for neurodegenerative disorders
In the previous sections, we summarized the importance 
of PINK1 and PARKIN in controlling critical cellular 

mechanisms. The extensive published data pinpoint that 
disruption of PINK1/PARKIN signalling culminates in 
impaired mitochondrial function and ultimately con-
tribute to neurodegenerative and neuroinflammatory 
processes. Thus, PARKIN and PINK1 gene augmentation 
therapy seems, at least in theory, a promising strategy for 
brain and retinal degenerative disorders. Table 1 summa-
rizes the viral vectors used in each study.

Pre-clinical studies show that PARKIN gene aug-
mentation ameliorates disease features in several 
disease models [30, 52–59]. Amongst the different 
gene augmentation therapy vectors, lentiviral [52, 53] 
and adeno-associated viral (AAV) vectors have been 
described [30, 54–59]. Lentiviral-mediated gene ther-
apy delivery of Parkin into substantia nigra significantly 
reduces α-synuclein-induced neuropathology, includ-
ing preservation of tyrosine hydroxylase-positive cell 
bodies in the substantia nigra and sparing of tyrosine 
hydroxylase-positive nerve terminals in the striatum 
[52]. Moreover, overexpression of human PARKIN in 
rat’s substantia nigra prevented 6-hydroxydopamine-
induced degeneration of dopaminergic terminals and 
cell bodies and ameliorated the motor behaviour [53]. 
In the recent years, AAV vectors have become popu-
lar gene delivery tools due to their safety profile, low 
immunogenicity, lack of toxicity and to the fact of the 
AAV genomes do not integrate into the host genome 
[211]. Moreover, the existence of several natural AAV 
serotypes and derivatives that differ in their tropism, 
makes AAV a powerful tool for gene delivery in the 
central nervous system. Several AAV serotypes includ-
ing 2, 5, 6 and 8 have been used to transduce neurons 
and deliver Parkin under the control of the cytomeg-
alovirus (CMV), CMV enhancer/chicken β-actin or 
phosphoglycerate kinase 1 (PGK) promoter [30, 54, 55, 
57, 58]. As observed for lentiviral gene therapy vectors, 
AAV-mediated delivery of Parkin into the substantia 
nigra also demonstrated to improve disease features in 
different PD animal models. The therapeutic potential 
of AAV-gene transfer of Parkin on the dopaminergic 
system was assessed on 1-methyl-4- phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-treated mice, a model for 
PD [54]. AAV2/2-Parkin treatment resulted in a higher 
survival rate of dopamine neurons in the substantia 
nigra. Protection at the neuronal level was supported 
by increased amphetamine-induced contralateral 
turning behaviour, a test to evaluate presynaptic neu-
rotransmission, once amphetamine inhibits the dopa-
mine transporter and stimulates dopamine release from 
presynaptic axon terminals [54]. Another study tested 
the effects of AAV2/5-Parkin delivery before a 4-site 
striatal 6-hydroxydopamine lesion [55]. Parkin treated 
lesioned rats displayed 67% in amphetamine-induced 
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rotational behaviour reduction and used their affected 
paw nearly twice as often as control rats in the cylinder 
test, demonstrating a clear motor improvement after 
treatment [55]. After neuropathological analysis of the 
lesioned rats, no differences in surviving nigral dopa-
minergic neurons or striatal dopaminergic innervation 
was observed. Therefore, the authors hypothesize that 
the behavioural improvement resulted from enhanced 
levels of tyrosine hydroxylase due to Parkin overexpres-
sion. To test this, the effects of nigral human PARKIN 
overexpression in intact rats was examined. The human 
PARKIN treated striatum contained more dopamine, 
suggesting that PARKIN enhances nigral dopaminer-
gic neurotransmission rather than exerting any protec-
tive effect on the nigrostriatal tract [55]. Increase in 
PARKIN levels attenuates methamphetamine-induced 
decreases in striatal tyrosine hydroxylase immuno-
reactivity in a dose-dependent manner, indicating 
that PARKIN exerts a neuroprotective effect on stri-
atal dopaminergic terminals upon methamphetamine 
neurotoxicity [57]. High dosage of methamphetamine 
causes selective degeneration of dopaminergic termi-
nals in the striatum, sparing other striatal terminals 
and cell bodies [57]. The overexpression of AAV-medi-
ated α-synuclein decreases the density of dopaminergic 
axon terminals in the striatum of rats and monkeys, 
which is ameliorated by co-expression of PARKIN 
[59]. Moreover, AAV-delivery of Parkin is associated 
with either less accumulation of α-synuclein protein, 
phosphorylation at serine residue at 129th position or 
both [59]. AAV-mediated-tau overexpression induced 
dopaminergic neuron loss, and PARKIN prevented the 
loss of substantia nigra dopaminergic neurons in tau-
induced dopaminergic degeneration model [56]. Stud-
ies performed in young transgenic mice overexpressing 
Parkin, specifically in neurons, show improved MPTP-
induced mitochondrial impairment in the substantia 
nigra, while old transgenic mice present decreased stri-
atal α-synuclein [212]. Also, pharmacological strategies 
exploit PARKIN signalling activation have been tested. 
Inhibition of ROCK promotes increased recruitment 
of HK2, a positive regulator of PARKIN, to mitochon-
dria, leading to increased targeting of mitochondria to 
lysosomes and removal of damaged mitochondria from 
cells. Furthermore, ROCK inhibitors have neuropro-
tective effects in a fly PD model [213]. A sign of warn-
ing came from the study performed by van Rompuy 
et al. [58], where administration AAV2/8-CMV-human 
PARKIN, in (healthy, non-lesioned) wild-type rats sub-
stantia nigra induced progressive and dose-dependent 
dopaminergic cell death, starting from 8  weeks after 
injection. The authors excluded non-specific cell death 
induced by an inflammatory response due to the vector 

preparations. Interestingly, administration of the same 
vector and dose in mouse substantia nigra did not 
cause toxicity [58]. The evidence gathered seems to 
support the use of PARKIN viral delivery for the treat-
ment of PD. However, most of these studies were per-
formed in acute and induced disease models, where 
treatment is often provided before the injury. To the 
best of our knowledge, there is no direct evidence of 
functional rescue via viral-mediated delivery of Parkin 
in a Parkin-deficient animal. Moreover, although some 
of these studies show behavioural improvements and 
dopaminergic neuronal survival, very little is described 
about the mechanism underlying these observations. 
The concerns raised by van Rompuy et al. [58] suggest 
the necessity of performing toxicity assays to study the 
potential deleterious effect of long term overexpression 
of PARKIN, especially in human-derived tissues.

Overexpression of PARKIN has been also exploited 
as a treatment for AD. In fact, overexpression of Par-
kin ameliorates impaired mitophagy and promotes the 
removal of damaged mitochondria in amyloid β-treated 
cells, indicating that upregulation of PARKIN-mediated 
mitophagy may be a potential strategy also to treat AD 
[214]. However, not only PARKIN gene therapy vectors 
have been developed and tested. In the literature, there 
is at least one study assessing the potential of PINK1 
gene augmentation as a treatment for AD. The ration-
ale for that originates from the fact that in the brains of 
patients with AD and transgenic AD mice model PINK1 
is downregulated [60]. AAV-PINK1 transduction signifi-
cantly reduced human amyloid-β levels by 65–70% in the 
hippocampus of transgenic mAPP mice that overexpress 
a human mutant form of APPbearing both the Swed-
ish (K670N/M671L) and the Indiana (V717F) mutations 
(APPSwInd) at 11–13 months of age. PINK1 overexpres-
sion promotes the clearance of damaged mitochondria 
by augmenting autophagy signalling via activation of 
autophagy receptors (OPTN and NDP52), thereby alle-
viating amyloid-β-induced loss of synapses and cognitive 
decline in mAPP mice [60]. Transgenic mice overexpress-
ing the PARKIN in neurons were crossed with APP/PS1 
transgenic mice. Overexpression of PARKIN restored 
activity-dependent synaptic plasticity and rescued 
behavioural abnormalities. Moreover, overexpression of 
Parkin was associated with down-regulation of APP pro-
tein expression, decreased β-amyloid load and reduced 
inflammation [215].

A recent study demonstrated that overexpression of 
Parkin cDNA driven by a CMV promoter, encapsu-
lated in AAV2/2, and delivered by intravitreal injection, 
improved the outcome in a rat model of glaucoma. Deliv-
ery of Parkin into the retina protected against retinal 
ganglion cell loss, attenuated glial fibrillary acidic protein 
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(GFAP) expression, promoted optineurin expression, 
improved mitochondrial health, and partially restored 
dysfunction of mitophagy in chronic hypertensive glau-
coma rats [30].

Khalil et  al. [48] studied the impact of PINK1 overex-
pression in a Drosophila model of HD. Their data dem-
onstrate that PINK1 overexpression rescues HD neuronal 
pathology, ameliorated ATP levels, neuronal integrity and 
adult fly survival, demonstrating that PINK1 counteracts 
the neurotoxicity of mutant Huntingtin [48]. PINK1 neu-
roprotection against mutant Huntingtin is dependent 
on PARKIN, mitofusin and the voltage-dependent anion 
channel [48].

Conclusions
The fast-increasing list of scientific publications related 
to PINK1/PARKIN signalling demonstrates how limited 
is our knowledge about this pathway and at the same 
time how disease-relevant this seems to be. It is becom-
ing clear that PINK1 and PARKIN related processes are 
capable of modulating neurodegeneration and neuro-
inflammation, either by removing dysfunctional mito-
chondria, controlling mtDNA release or promoting 
neuroprotective and anti-inflammatory phenotypes.

Based on the studies here compiled gene augmenta-
tion of PARKIN and PINK1 seems a promising strategy 
for the treatment of brain and retinal neurodegenerative 
disorders. All the pre-clinical studies summarized in this 
review not only increase our knowledge about PINK1/
PARKIN signalling but raise hope for the development of 
new treatments for neurodegenerative disorders.
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